EVALUASI TOKSISITAS AKUT DAN SUB-AKUT DARI INSEKTISIDA LAMBDA-CYHALOTHRIN PADA IKAN PATIN Pangasianodon hypophthalmus
DOI:
https://doi.org/10.15578/jra.19.3.2024.259-275Keywords:
glukosa, histologi, Lambda-cyhalothrin, pertumbuhan, toksisitas, glucose, growth, histology, toxicityAbstract
Lambda-cyhalothrin adalah insektisida beracun yang seringkali digunakan untuk mengendalikan hama di lahan pertanian. Insektisida ini sangat beracun terhadap organisme akuatik dan berpotensi mengganggu keseimbangan metabolisme dan fisiologi ikan budidaya. Ikan patin (Pangasianodon hypophthalmus) merupakan salah satu jenis ikan air tawar yang sangat rentan terpapar Lambda-cyhalothrin karena letak sistem budidaya yang berdekatan dengan lahan pertanian. Penelitian ini bertujuan untuk mengetahui efek toksisitas akut Lambda-cyhalothrin dan efek sub-akut terhadap organ tubuh ikan patin. Ikan patin diperoleh dari pembudidaya ikan di Bogor, Jawa Barat, dengan berat dan Panjang rata-rata 8,59 ± 0,47 g dan 7,52 ± 0,83 cm. Bahan toksikan yang digunakan adalah insektisida Lambda-cyhalothrin. Ikan yang diuji dipelihara dalam akuarium berukuran 30x30x30 cm3 yang diisi air sebanyak 20 L. Penelitian dibagi menjadi tiga tahap, yaitu uji nilai kisaran, uji toksisitas akut LC50-96 jam, dan uji sub akut. Hasil penelitian menunjukkan bahwa LC50-96 jam Lambda-cyhalothrin pada ikan patin adalah 5,2 µg L-1. Hasil uji sub akut dengan taraf perlakuan 2,6 µg L-1 menunjukkan pertumbuhan minimal 0,688% dan berdampak nyata (P<0,05) terhadap kadar glukosa yang mencapai 148,16 mg dL-1. Kesimpulan penelitian ini adalah Lambda-cyhalothrin bersifat merugikan terhadap ikan patin yang menyebabkan kerusakan yang nyata pada insang, usus, dan hati yang dibuktikan dengan adanya hiperplasia, proliferasi, vakuolisasi, kongesti, fusi, nekrosis, cloudy swelling dan inflamasi.
Lambda-cyhalothrin is a toxic insecticide frequently used to control pests in agricultural settings. This insecticide is very toxic to aquatic organisms and can potentially disrupt the balance of metabolism and physiology of farmed fish. Striped catfish (Pangasianodon hypophthalmus) is one of farmed freshwater fish species highly susceptible to being exposed to Lambda-cyhalothrin due to the common shared location of the farming system with agricultural land. This study aimed to determine the acute toxicity effects of Lambda-cyhalothrin and the sub-acute effects on the organs of the striped catfish. The striped catfish was obtained from fish farmers in Bogor, West Java, with an average weight and length of 8.59 ± 0.47 g and 7.52 ± 0.83 cm, respectively. The toxicant material used was Lambda-cyhalothrin insecticide. The tested fish were reared in aquarium sized 30x30x30 cm3 filled with 20 L of water. This study was divided into three stages, i.e., range value test, acute toxicity test (96h-LC50), and sub-acute test. The result showed that 96h-LC50 of Lambda-cyhalothrin on striped catfish was 5.2 µg L-1. The results of the sub-acute test with a treatment level of 2.6 µg L-1 showed minimal growth at 0.688% and a significant impact (P<0.05) on glucose levels, which reached 148.16 mg dL-1. This study concludes that Lambda-cyhalothrin insecticide is detrimental to striped catfish, causing noticeable damage to the gill, intestine, and liver, as evidenced by hyperplasia, proliferation, vacuolization, congestion, fusion, necrosis, cloudy swelling, and inflammation.
References
Alalibo, K., Patricia, U. A., & Ransome, D. E. (2019). Effects of Lambda Cyhalothrin on the behaviour and histology of gills of Sarotherodon melanotheron in brackish water. Scientific African, 6, e00178. https://doi.org/10.1016/j.sciaf.2019.e00178
Amweg, E. L., Weston, D. P., & Ureda, N. M. (2005). Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environmental Toxicology and Chemistry, 24(4), 966–972. https://doi.org/10.1897/04-146R1.1
Ariyani, M., Pitoi, M. M., Koesmawati, T. A., Maulana, H., Endah, E. S., & Yusiasih, R. (2020). Pyrethroid residues on tropical soil of an Indonesian tea plantation: Analytical method development, monitoring, and risk assessment. Sustainable Environment Research, 30(1), 15. https://doi.org/10.1186/s42834-020-00055-7
Badan Standardisasi Nasional. (2002). SNI 01-6483.5-2002. Ikan patin siam (Pangasius hypopthalmus) - Bagian 5: Produksi kelas pembesaran di kolam. Badan Standardisasi Nasional.
Başer, S., Erkoç, F., Selvi, M., & Koçak, O. (2003). Investigation of acute toxicity of permethrin on guppies Poecilia reticulata. Chemosphere, 51(6), 469–474. https://doi.org/10.1016/S0045-6535(03)00033-X
Bruno, D., Nowak, B., & Elliott, D. (2006). Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections. Diseases of Aquatic Organisms, 70, 1–36. https://doi.org/10.3354/dao070001
Burr, S. A. (2004). Structure-activity and interaction effects of 14 different pyrethroids on voltage-gated chloride ion channels. Toxicological Sciences, 77(2), 341–346. https://doi.org/10.1093/toxsci/kfh027
Camargo, M. M. P., & Martinez, C. B. R. (2007). Histopathology of gills, kidney and liver of a neotropical fish caged in an urban stream. Neotropical Ichthyology, 5(3), 327–336. https://doi.org/10.1590/S1679-62252007000300013
Chatterjee, A., Bhattacharya, R., Chatterjee, S., & Saha, N. C. (2021). λ cyhalothrin induced toxicity and potential attenuation of hematological, biochemical, enzymological and stress biomarkers in Cyprinus carpio L. at environmentally relevant concentrations: A multiple biomarker approach. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 250, 109164. https://doi.org/10.1016/j.cbpc.2021.109164
Conde-Sieira, M., & Soengas, J. L. (2016). Nutrient sensing systems in fish: impact on food intake regulation and energy homeostasis. Frontiers in Neuroscience, 10, 603. https://doi.org/10.3389/fnins.2016.00603
David, M., & Kartheek, R. (2014). Sodium cyanide induced histopathological changes in kidney of fresh water fish cyprinus carpio under sublethal exposure. International Journal of Pharmaceutical, Chemical and Biological Sciences, 4(3), 634-639.
Delgado-Moreno, L., Lin, K., Veiga-Nascimento, R., & Gan, J. (2011). Occurrence and toxicity of three classes of insecticides in water and sediment in two Southern California Coastal Watersheds. Journal of Agricultural and Food Chemistry, 59(17), 9448–9456. https://doi.org/10.1021/jf202049s
Denholm, I., Devine, G. J., & Williamson, M. S. (2002). Insecticide resistance on the move. Science, 297(5590), 2222–2223. https://doi.org/10.1126/science.1077266
Devi, M. S., & Gupta, A. (2024). Sub-lethal effects of deltamethrin and permethrin resulted in ultrastructural alterations in scales and oxygen uptake changes of Anabas testudineus (Bloch, 1792). Aquatic Toxicology, 272, 106939. https://doi.org/10.1016/j.aquatox.2024.106939
Feng, J., Xu, X., Huang, W., Gong, H., Sun, X., Liu, J., Xu, C., & Liu, W. (2024). Enantioselective toxicity of tetramethrin to different developmental stages of zebrafish (Danio rerio). Toxics, 12(2). https://doi.org/10.3390/toxics12020146
Fouzai, C., Trabelsi, W., Bejaoui, S., Marengo, M., Ghribi, F., Chetoui, I., Mili, S., & Soudani, N. (2023). Dual oxidative stress and fatty acid profile impacts in Paracentrotus lividus exposed to lambda-cyhalothrin: Biochemical and histopathological responses. Toxicological Research, 39(3), 429–441. https://doi.org/10.1007/s43188-023-00174-4
Ganiyat, A. M., Caleb, O. J., Dezi, A. D., & Adamu, M. (2023). Glutathione attenuated lambda-cyhalothrin-induced alteration of serum total cholesterol concentration and oxidative stress parameters in rats. Toxicology Research, 12(1), 33–38. https://doi.org/10.1093/toxres/tfac080
Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., Van Der Ploeg, M., Van De Zee, S. E. A. T. M., & Ritsema, C. J. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65. https://doi.org/10.1016/j.iswcr.2015.03.002
Goddard, S. (1996). Feed management in intensive aquaculture. Springer US. https://doi.org/10.1007/978-1-4613-1173-7
Habeeba, U., & David, M. (2016). Studies on acute and behavioral toxicity of lambda cyhalothrin on freshwater fish Cyprinus carpio. International Journal of Toxicology and Applied Pharmacology, 6(1), 1–6.
Hamed, M., Said, R., Soliman, H., Osman, A., & Martyniuk, C. (2023). Immunotoxicological, histopathological, and ultrastructural effects of waterborne pyrogallol exposure on African catfish (Clarias gariepinus). Chemosphere, 349, 140792. https://doi.org/10.1016/j.chemosphere.2023.140792
Hardy, N. B. (2022). Delaying quantitative resistance to pesticides and antibiotics. Evolutionary Applications, 15(12), 2067–2077. https://doi.org/10.1111/eva.13497
He, L. -M., Troiano, J., Wang, A., & Goh, K. (2008). Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. In D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology (pp. 71–91). Springer New York. https://doi.org/10.1007/978-0-387-77030-7_3
Hopkins, K. D. (1992). Reporting fish growth: a review of the basics1. Journal of the World Aquaculture Society, 23(3), 173–179. https://doi.org/10.1111/j.1749-7345.1992.tb00766.x
Islam, S. M. M., Rahman, M. A., Nahar, S., Uddin, M. H., Haque, M. M., & Shahjahan, M. (2019). Acute toxicity of an organophosphate insecticide sumithion to striped catfish Pangasianodon hypophthalmus. Toxicology Reports, 6, 957–962. https://doi.org/10.1016/j.toxrep.2019.09.004
Kaval Oğuz, E., Alkan, Z., Oguz, A. R., Azizoğlu, B. E., & Örgi, E. (2023). Histopathological determination of changes in tissues of Lake Van Fish (Alburnus tarichi (Güldenstädt, 1814)) exposed to Esfenvalerate. Chemistry and Ecology, 40(1), 22-35. https://doi.org/10.1080/02757540.2023.2290182
Khalil, S. R., Elhakim, Y. A., Abd El-fattah, A. H., Ragab Farag, M., Abd El-Hameed, N. E., & EL-Murr, A. E. (2020). Dual immunological and oxidative responses in Oreochromis niloticus fish exposed to lambda cyhalothrin and concurrently fed with Thyme powder (Thymus vulgaris L.): Stress and immune encoding gene expression. Fish & Shellfish Immunology, 100, 208–218. https://doi.org/10.1016/j.fsi.2020.03.009
Kou, Y., Zhang, W., Zhang, Y., Ge, X., & Wu, Y. (2024). Toxic effects of trace metal(loid) mixtures on aquatic organisms. Science of The Total Environment, 948, 174677. https://doi.org/10.1016/j.scitotenv.2024.174677
Kumar, A., Sharma, B., & Pandey, R. S. (2007). Preliminary evaluation of the acute toxicity of cypermethrin and λ-cyhalothrin to Channa Punctatus. Bulletin of Environmental Contamination and Toxicology, 79(6), 613–616. https://doi.org/10.1007/s00128-007-9282-8
Lay, J., Vogel, J., Belden, J., Brown, G., & Storm, D. (2024). Water quality and the first-flush effect in roof-based rainwater harvesting, Part I: Water quality and soil accumulation. Water, 16, 1402. https://doi.org/10.3390/w16101402
Li, H., Cheng, F., Wei, Y., Lydy, M. J., & You, J. (2017). Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. Journal of Hazardous Materials, 324(Part B), 258–271. https://doi.org/10.1016/j.jhazmat.2016.10.056
Lin, M. -H., Lin, J. -F., Yu, M. -C., Wu, S. -N., Wu, C. -L., & Cho, H. -Y. (2022). Characterization in potent modulation on voltage-gated Na(+) current exerted by deltamethrin, a pyrethroid insecticide. International Journal of Molecular Sciences, 23(23). https://doi.org/10.3390/ijms232314733
Malaj, E., Von Der Ohe, P. C., Grote, M., Kühne, R., Mondy, C. P., Usseglio-Polatera, P., Brack, W., & Schäfer, R. B. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences, 111(26), 9549–9554. https://doi.org/10.1073/pnas.1321082111
Marni, N. A. (2011). Pengaruh salinitas terhadap produksi dan gambaran patologi ikan mas (Cyprinus carpio) [Tesis, Institut Pertanian Bogor]. Institut Pertanian Bogor.
Nguyen, N. (2016). Improving sustainability of striped catfish (Pangasianodon hypophthalmus) farming in the Mekong Delta, Vietnam through recirculation technology. Wageningen University. https://doi.org/10.18174/394644
Orso, G., Imperatore, R., Coccia, E., Rinaldi, G., Cicchella, D., & Paolucci, M. (2023). A deep survey of fish health for the recognition of useful biomarkers to monitor water pollution. Environments, 10, 219. https://doi.org/10.3390/environments10120219
Phuong, N. T., & Oanh, D. T. H. (2010). Striped catfish aquaculture in Vietnam: A decade of unprecedented development. In S. S. De Silva & F. B. Davy (Eds.), Success stories in Asian aquaculture (pp. 131–147). Springer Netherlands. https://doi.org/10.1007/978-90-481-3087-0_7
Polat, H., Erkoç, F. Ü., Viran, R., & Koçak, O. (2002). Investigation of acute toxicity of beta-cypermethrin on guppies Poecilia reticulata. Chemosphere, 49(1), 39–44. https://doi.org/10.1016/S0045-6535(02)00171-6
Rahman, M., & Hasan, M. (2019). Changes in haematological parameters of silver barb (Barbonymus gonionotus) due to exposure of pesticides, lamda-cyhalothrin and dimethoate. Journal of Global Biosciences, 8, 6368–6381.
Riaz, G., Tabinda, A. B., Kashif, M., Yasar, A., Mahmood, A., Rasheed, R., Khan, M. I., Iqbal, J., Siddique, S., & Mahfooz, Y. (2018). Monitoring and spatiotemporal variations of pyrethroid insecticides in surface water, sediment, and fish of the river Chenab Pakistan. Environmental Science and Pollution Research International, 25(23), 22584–22597. https://doi.org/10.1007/s11356-018-1963-9
Richterová, Z., Máchová, J., Stará, A., Tumová, J., VelÃÅ¡ek, J., Å evÄÃková, M., & Svobodová, Z. (2014). Effects of cyhalothrin-based pesticide on early life stages of common carp ( Cyprinus carpio L.). Biochemistry Research International, 2014, 107373. https://doi.org/10.1155/2014/107373
Salako, A. F., Amaeze, N. H., Shobajo, H. M., & Osuala, F. I. (2020). Comparative acute toxicity of three pyrethroids (Deltamethrin, cypermethrin and lambda-cyhalothrin) on guppy fish (Poecilia reticulata Peters, 1859). Scientific African, 9, e00504. https://doi.org/10.1016/j.sciaf.2020.e00504
Saravanan, R., Revathi, K., & Murthy, P. B. (2009). Lambda cyhalothrin induced alterations in Clarias batrachus. Journal of Environmental Biology, 30(2), 265-270.
Shafer, T. J., Meyer, D. A., & Crofton, K. M. (2005). Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environmental Health Perspectives, 113(2), 123–136. https://doi.org/10.1289/ehp.7254
Stehle, S., & Schulz, R. (2015). Agricultural insecticides threaten surface waters at the global scale. Proceedings of the National Academy of Sciences, 112(18), 5750–5755. https://doi.org/10.1073/pnas.1500232112
Tang, W., Wang, D., Wang, J., Wu, Z., Li, L., Huang, M., Xu, S., & Yan, D. (2018). Pyrethroid pesticide residues in the global environment: An overview. Chemosphere, 191, 990–1007. https://doi.org/10.1016/j.chemosphere.2017.10.115
United States Environmental Protection Agency. (2002). Method for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organism. Fifth edition. United States Environmental Agency.
Velmurugan, B., Selvanayagam, M., Cengiz, E. I., & Unlu, E. (2007). Histopathology of lambda-cyhalothrin on tissues (gill, kidney, liver and intestine) of Cirrhinus mrigala. Environmental Toxicology and Pharmacology, 24(3), 286–291. https://doi.org/10.1016/j.etap.2007.07.001
Vester, A. I., Chen, M., Marsit, C. J., & Caudle, W. M. (2019). A neurodevelopmental model of combined pyrethroid and chronic stress exposure. Toxics, 7(2). https://doi.org/10.3390/toxics7020024
Viran, R., Ünlü Erkoç, F., Polat, H., & Koçak, O. (2003). Investigation of acute toxicity of deltamethrin on guppies (Poecilia reticulata). Ecotoxicology and Environmental Safety, 55(1), 82–85. https://doi.org/10.1016/S0147-6513(02)00096-9
Wakil, W., Kavallieratos, N. G., Eleftheriadou, N., Haider, S. A., Qayyum, M. A., Tahir, M., Rasool, K. G., Husain, M., & Aldawood, A. S. (2024). A winning formula: Sustainable control of three stored-product insects through paired combinations of entomopathogenic fungus, diatomaceous earth, and lambda-cyhalothrin. Environmental Science and Pollution Research International, 31(10), 15364–15378. https://doi.org/10.1007/s11356-024-31824-1
Wedemeyer, G. A., & Yasutake, W. T. (1977). Clinical methods for the assessment of the effects of environmental stress on fish health (Technical Paper 89). U.S. Fish and Wildlife Service.
Wells, P. G. (2009). Aquatic toxicology: concepts, practice, new directions. In B. Ballantyne, T. C. Marrs, T. Syversen, D. A. Casciano, & S. C. Sahu (Eds.), General, applied and systems toxicology. Wiley. https://doi.org/10.1002/9780470744307.gat092
Werner, I., & Young, T. M. (2018). Pyrethroid insecticides—Exposure and impacts in the aquatic environment. In D. A. Dellasala, & M. I. Goldstein (Eds.), Encyclopedia of the anthropocene (pp. 119–126). Elsevier. https://doi.org/10.1016/B978-0-12-809665-9.09992-4
Yao, R., Yao, S., Ai, T., Huang, J., Liu, Y., & Sun, J. (2023). Organophosphate pesticides and pyrethroids in farmland of the Pearl River Delta, China: Regional residue, distributions and risks. International Journal of Environmental Research and Public Health, 20(2). https://doi.org/10.3390/ijerph20021017
Yekeen, T. A., Fawole, O. O., & Bakare, A. A. (2013). Evaluation of toxic effects of lambdacyhalothrin on the haematology and selected biochemical parameters of African catfish Clarias gariepinus. Zoology and Ecology, 23(1), 45–52. https://doi.org/10.1080/21658005.2013.767613
Zheng, S., Chen, B., Qiu, X., Chen, M., Ma, Z., & Yu, X. (2016). Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere, 144, 1177–1192. https://doi.org/10.1016/j.chemosphere.2015.09.050
Downloads
Additional Files
Published
How to Cite
Issue
Section
License

Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.Â