GROWTH PERFORMANCE OF WHITELEG SHRIMP (Litopenaeus vannamei) AT DIFFERENT STOCKING DENSITIES IN A POLYCULTURE SYSTEM WITH SEA GRAPE (Caulerpa sp.)

GROWTH PERFORMANCE OF WHITELEG SHRIMP (Litopenaeus vannamei) AT DIFFERENT STOCKING DENSITIES IN A POLYCULTURE SYSTEM WITH SEA GRAPE (Caulerpa sp.)

Authors

DOI:

https://doi.org/10.15578/jra.20.1.2025.49-62

Keywords:

Caulerpa sp., growth, Litopenaeus vannamei, polyculture, pertumbuhan, polikultur

Abstract

This study evaluated the growth performance, survival rate, and water quality improvement in a polyculture system integrating whiteleg shrimp (Litopenaeus vannamei) and sea grapes (Caulerpa sp.) with different shrimp stocking densities. This study employed a completely randomized design with three treatments, each at three levels of shrimp densities (15, 30, and 45 individuals per tank with a capacity of 0.06 m³), integrated with sea grape (50 g) for 60 days. During maintenance, shrimp were fed commercial feed, and no water changes were performed. The results showed that the highest shrimp growth and survival were obtained at a density of 15 individuals per tank, with growth rates of 6.54% day-1 and survival rates of 98% for the shrimp, resulting in optimal growth in Caulerpa sp. In contrast, a higher stocking density (45 individuals per tank) was associated with lower observed growth and survival rate of whiteleg shrimp throughout the culture period. Water quality showed favourable conditions for both, with pH levels (6.5–9.4), dissolved oxygen concentrations (5.0–8.2 mg L-1), and temperatures (26–38°C) within the optimal range. The polyculture system facilitated nutrient recycling, where shrimp waste was utilized by Caulerpa sp., effectively reducing nitrate and phosphate concentrations and preventing eutrophication in all treatments with increased stocking density. The conclusion of this study highlighted the potential of the polyculture system to improve ecological balance and productivity in aquaculture. Lower shrimp stocking densities resulted in high growth and survival, while integrating Caulerpa sp. contributed to environmental sustainability. 

Penelitian ini mengevaluasi performa pertumbuhan, tingkat kelangsungan hidup, dan perbaikan kualitas air dalam sistem polikultur yang mengintegrasikan udang vaname (Litopenaeus vannamei) dan anggur laut (Caulerpa sp.) dengan kepadatan tebar udang yang berbeda. Penelitian ini menggunakan rancangan acak lengkap dengan tiga perlakuan, yaitu tiga tingkat kepadatan udang (15, 30, dan 45 ekor per wadah berkapasitas 0,06 m³), masing-masing diintegrasikan dengan anggur laut (50 g) selama 60 hari. Selama pemeliharaan, udang diberi pakan komersial dan tidak dilakukan pergantian air. Hasil penelitian menunjukkan bahwa pertumbuhan dan kelangsungan hidup udang tertinggi diperoleh pada kepadatan 15 ekor per wadah, masing-masing sebesar 6,54% per hari dan 98%, serta menghasilkan pertumbuhan Caulerpa sp. yang optimal. Sebaliknya, kepadatan tebar yang lebih tinggi (45 ekor per wadah) menghasilkan pertumbuhan dan tingkat kelangsungan hidup udang vaname yang lebih rendah selama masa pemeliharaan. Kualitas air menunjukkan kondisi yang mendukung untuk keduanya, dengan pH (6,5–9,4), oksigen terlarut (5,0–8,2 mg L-1), dan suhu (26–38°C) berada dalam kisaran optimal. Sistem polikultur ini memfasilitasi daur ulang nutrien, di mana limbah udang dimanfaatkan oleh Caulerpa sp., secara efektif mengurangi konsentrasi nitrat dan fosfat serta mencegah eutrofikasi pada semua perlakuan, bahkan dengan peningkatan kepadatan tebar. Kesimpulan dari penelitian ini menyoroti potensi sistem polikultur dalam meningkatkan keseimbangan ekologis dan produktivitas di bidang akuakultur. Kepadatan tebar udang yang rendah menghasilkan pertumbuhan dan kelangsungan hidup yang tinggi, sementara integrasi dengan Caulerpa sp. berkontribusi terhadap keberlanjutan lingkungan.

Author Biographies

Riris Yuli Valentine, Politeknik Kelautan dan Perikanan Kupang

Lecturer at the Department of Aquaculture Technology, Politeknik Kelautan dan Perikanan Kupang.

Dimas Rizky Hariyadi, Politeknik Kelautan dan Perikanan Kupang

Lecturer at the Department of Aquaculture Technology, Politeknik Kelautan dan Perikanan Kupang.

Sartika Tangguda, Politeknik Kelautan dan Perikanan Kupang

Lecturer at the Department of Aquaculture Technology, Politeknik Kelautan dan Perikanan Kupang.

References

Amaral, R. L., Pereira, S. M., & Santos A. C. (2021). Nutrient-rich aquaculture effluents improve growth rates and carrageenan yield in seaweeds. Aquaculture Research, 52(6), 1128-1140.

Anh, N. T. N., Murungu, D. K., Van Khanh, L., & Hai, T. N. (2022). Polyculture of sea grape (Caulerpa lentillifera) with different stocking densities of whiteleg shrimp (Litopenaeus vannamei): Effects on water quality, shrimp performance and sea grape proximate composition. Algal Research, 67, 102845. https://doi.org/10.1016/j.algal.2022.102845

Azim, M. E., & Little, D. C. (2006). Intensifying aquaculture production through new approaches to manipulating natural food. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 1(62), 1–23. https://doi.org/10.1079/PAVSNNR20061062

Badan Standardisasi Nasional. (2006). 01-7246-2006. Produksi udang vaname (Litopenaeus vannamei) di tambak dengan teknologi intensif. Badan Standardisasi Nasional.

Boyd, C. E. (2018). Water quality management for pond fish culture. Elsevier Science Publishers.

Boyd, C. E., & Tucker, C. S. (1998). Pond aquaculture water quality management. Kluwer Academic Publishers.

Bray, W. A., Lawrence, A. L., & Leung-Trujillo, J. R. (1994). The effect of salinity on growth and survival of Penaeus vannamei, with observations on the interaction of IHHN virus and salinity. Aquaculture, 122(2-3), 133-146.

Buschmann, A. H., Camus, C., Infante, J., Neori, A., Israel, Ã., Hernández-González, M. C., Pereda, S. V., Gomez-Pinchetti, J. L., Golberg, A., Tadmor-Shalev, N., & Critchley, A. T. (2017). Seaweed production: overview of the global state of exploitation, farming and emerging research activity. European Journal of Phycology, 52(4), 391-406.

Chopin, T., Buschmann, A. H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G. P., Zertuche-González, J. A., Yarish, C., & Neefus, C. (2001). Integrating seaweeds into marine aquaculture systems: a key toward sustainability. Journal of Phycology, 37(6), 975–986. https://doi.org/10.1046/j.1529-8817.2001.01137.x

Dahuri, R. (2013). Usaha pertambakan udang vannamei prospektif. BPEN.

Effendi, M. I. (1979). Method of fisheries biology. Yayasan Dewi Sri. Bogor.

Effendi, M. I. (1997). Biologi perikanan. Yayasan Pustaka Nusantara.

Fang, J., Jiang, Z., & Wang, Y. (2022). Integration of shrimp aquaculture with macroalgae for nutrient recycling and disease mitigation. Marine Pollution Bulletin, 176(3), 239–250.

Glicksman, M. (1979). Gelling hydrocolloids in food product applications. In J. M. V. Blanshard & J. R. Mitchell (Eds.), Polysaccharides in food (pp. 185-204). Butterworths.

Gomez-Zavaglia, A., Prieto Lage, M. A., Jimenez-Lopez, C., Mejuto, J. C., & Simal-Gandara, J. (2019). The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants, 8(9), 406. https://doi.org/10.3390/antiox8090406

Guo, H., Yao, J., Sun, Z., & Duan, D. (2014). Effect of temperature, irradiance on the growth of the green alga Caulerpa lentillifera (Bryopsidophyceae, Chlorophyta). Journal of Applied Phycology, 27, 879 - 885. https://doi.org/10.1007/s10811-014-0358-7

Habaki, R., Hasan, T., & Sari, N. (2016). Light intensity and its impact on shrimp biofilm development. Journal of Aquaculture Research, 68(2), 98–105.

Hu, X., Li, J., & Wang, Y. (2021). Impacts of high stocking densities on water quality and shrimp health in integrated systems. Aquaculture Environment Interactions, 10(5), 275–285.

Kumar, S., Lakra, W. S., & Pandey, A. (2017). Polyculture of Pacific white shrimp (Litopenaeus vannamei) with tilapia (Oreochromis mossambicus): Production performance and water quality. Aquaculture Reports, 6, 34–39. https://doi.org/10.1016/j.aqrep.2017.03.002

Lüning, K., & Pang, S. (2003). Mass cultivation of seaweeds: current aspects and approaches. Journal of applied phycology, 15, 115-119.

Ly, K. V., Murungu, D. K., Nguyen, D. P., & Nguyen, N. A. T. (2021). Effects of different densities of sea grape Caulerpa lentillifera on water quality, growth and survival of the whiteleg shrimp Litopenaeus vannamei in polyculture system. Fishes, 6(2), 19. https://doi.org/10.3390/fishes6020019

Marinho, G. S., Maciel, L. P. A., & Reis, R. P. (2013). Integrated culture of the shrimp Litopenaeus vannamei and the macroalgae Gracilaria birdiae in a biofloc system. Aquaculture International, 21, 75–85. https://doi.org/10.1007/s10499-012-9542-6

Nababan, E., Putra, I., & Rusliadi. (2015). Pemeliharaan udang vaname (Litopenaeus vannamei) dengan persentase pemberian pakan yang berbeda. Jurnal Online Mahasiswa Fakultas Perikanan dan Ilmu Kelautan, 2(2), 1-9.

Nasmia, Natsir, S., Rusaini, Tahya, A. M., Nilawati, J., & Ismail, S. N. (2022). Utilization of Caulerpa sp. as a feed ingredient for growth and survival of whiteleg shrimp and Chanos chanos in polyculture. Egyptian Journal of Aquatic Research, 48(2), 175-180. https://doi.org/10.1016/j.ejar.2022.01.005

Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., Shpiger, M., & Yarish, C. (2004). Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231(1-4), 361-391.

Nofiani, R., Hertanto, S., Zaharah, T. A., & Gafur, S. (2018). Proximate compositions and biological activities of Caulerpa lentillifera. Molekul, 13(2), 141-147. http://dx.doi.org/10.20884/1.jm.2018.13.2.441

Oedjoe, M. D. R., Rebhung, F., & Sunadji. (2019). Rumput laut (Kappaphycus alvarezii) sebagai komoditas unggulan dalam meningkatkan nilai tambah bagi kesejahteraan masyarakat di Provinsi Nusa Tenggara Timur. Jurnal Ilmiah Perikanan dan Kelautan, 11(1), 62-69. https://doi.org/10.20473/jipk.v11i1.10992

Omont, A., Peñaâ€Rodríguez, A., Terauchi, S., Matsui, A., Magallónâ€Barajas, F., Torresâ€Ochoa, E., & Endo, M. (2022). Growth performance and mineral composition of the white shrimp Penaeus vannamei and the sea grape Caulerpa lentillifera in a coâ€culture system. Aquaculture Research, 53(18), 6487-6499. https://doi.org/10.1111/are.16118

Putnarubun, C., & Valentine, R. (2022). Pigmen klorofil pada alga Caulerpa sp. di Kepulauan Kei. Jurnal Jambura Fish Processing Journal, 2(2), 2720-8826. https://doi.org/10.37905/jfpj.v2i2.6855

Rahman, M., Zhang, Y., & Chen, Y. (2019). Effects of stocking density on shrimp performance and nutrient dynamics in aquaculture polyculture systems. Aquatic Research, 12(4), 85–92.

Rahmawanti, S., Cokrowati, N., & Junaidi, M. (2021). Growth of Caulerpa sp. cultivated with the longline method in Rompo Village, Langgudu District, Bima Regency. Indonesian Journal of Aquaculture Medium, 1(1), 21-34.

Raniello, R., Lorenti, M., Brunet, C., & Buia, M. C. (2004). Photosynthetic plasticity of an invasive variety of Caulerpa racemosa in a Coastal Mediterranean Area: Light harvesting capacity and seasonal acclimation. Marine Ecology Progress Series, 271, 113-120. https://doi.org/10.3354/meps271113

Rohani, F., Setyawan, A., & Suparman, E. (2022). Carrageenan rendement and productivity in seaweed cultivation integrated with shrimp farming. Journal of Marine Science and Technology, 15(1), 34-41.

Rohani-Ghadikolaei, K., Abdulalian, E., & Ng, W. K. (2012). Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. Journal of food science and technology, 49, 774-780.

Samidjan, I., Heryoso, Herawati, V. E., & Pranggono, H. (2020). Rekayasa teknologi polikultur udang vaname dan rumput laut Caulerpa racemosa yang diberi pakan buatan yang diperkaya dengan enzim protease terhadap pertumbuhan dan kelulushidupan. Pena Akuatika: Jurnal Ilmiah Perikanan dan Kelautan, 19(1), 58-71.

Suprapto, J. (2005). Optimal pH ranges for aquaculture systems. Aquaculture Journal, 8(3), 112–121.

Tapotubun, A. M. (2018). Komposisi kimia rumput laut (Caulerpa lentillifera) dari perairan Kei Maluku dengan metode pengeringan berbeda. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(1), 11-23. https://doi.org/10.17844/jphpi.v21i1.21257

Troell, M., Halling, C., Neori, A., Chopin, T., Buschmann, A. H., Kautsky, N., & Yarish, C. (2003). Integrated mariculture: asking the right questions. Aquaculture, 226(1–4), 69–90. https://doi.org/10.1016/S0044-8486(03)00469-1

Utami, R. T., Hadi, P., & Zeng, J. (2016). Effects of salinity and osmoregulation on shrimp growth and resistance. Aquaculture Reviews, 23(2), 102–115.

Valentine, R. Y., Sudiarsa, I., Tangguda, S., & Hariyadi, D. (2021a). Kinerja pertumbuhan dan dinamika kualitas air pada budidaya anggur laut (Caulerpa sp.) dengan naungan berbeda. Jurnal Agroqua: Media Informasi Agronomi dan Budidaya Perairan, 19(1), 15-23. doi:10.32663/ja.v19i1.1540

Valentine, R. Y., Tangguda, S., Hariyadi, D., & Sudiarsa, I. (2021b). Pertumbuhan dan kandungan klorofil anggur laut (Caulerpa sp.) menggunakan teknik budidaya berbeda. Jurnal Galung Tropika, 10(1), 82 - 90. http://dx.doi.org/10.31850/jgt.v10i1.731.

Wang, L., Chen, Y., Zhang, W., & Zhang, Y. (2004). Effect of temperature on growth and survival of white shrimp (Litopenaeus vannamei). Aquaculture International, 12(1), 45–56.

Xu, W., Li, P., & Zhang, Y. (2020). Stocking density effects on shrimp growth and survival: A polyculture perspective. Aquaculture International, 28(4), 355–369.

Yustiati, A., Herawati, T., Lili, W., Nurhayati, A., Rosidah, & Suryadi, I. B. B. (2018). Budididaya polikultur ikan gurame (Osphronemus gouramy) dengan udang galah (Macrobrachium rosenbergii). Jurnal Pengabdian kepada Masyarakat, 2(1), 44-46.

Downloads

Published

2025-06-29

How to Cite

Valentine, R. Y., Hariyadi, D. R., & Tangguda, S. (2025). GROWTH PERFORMANCE OF WHITELEG SHRIMP (Litopenaeus vannamei) AT DIFFERENT STOCKING DENSITIES IN A POLYCULTURE SYSTEM WITH SEA GRAPE (Caulerpa sp.). Jurnal Riset Akuakultur, 20(1), 49–62. https://doi.org/10.15578/jra.20.1.2025.49-62

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...