EFFECT OF DIFFERENT FEEDING RATES OF CORN COB FLOUR SUPPLEMENTED-FEED ON THE GROWTH OF FARMED Osphronemus gouramy

EFFECT OF DIFFERENT FEEDING RATES OF CORN COB FLOUR SUPPLEMENTED-FEED ON THE GROWTH OF FARMED Osphronemus gouramy

Authors

  • Yulfiperius Yulfiperius Universitas Prof Dr Hazairin SH, Aquaculture Department, Faculty of Agriculture Science, Prof. Dr. Hazairin, SH University
  • Firman Firman Universitas Prof Dr Hazairin SH, Aquaculture Department, Faculty of Agriculture Science, Prof. Dr. Hazairin, SH University
  • Sri Hartini Universitas Prof Dr Hazairin SH, Aquaculture Department, Faculty of Agriculture Science, Prof. Dr. Hazairin, SH University

DOI:

https://doi.org/10.15578/jra.19.4.2024.315-329

Keywords:

corn cob flour, feeding rate, fish feed, gourami, growth, ikan gurami, pakan ikan, pertumbuhan, tepung tongkol jagung, tingkat pemberian pakan

Abstract

The rapid growth of the aquaculture industry and the limited availability of conventional fish feed have driven the need for alternative feed sources, particularly in intensive fish farming systems. This study, conducted from May 15 to July 5, 2017, in Bengkulu, aimed to determine the optimal feeding rate for gourami (Osphronemus goramy) using artificial fish pellets. A completely randomized design was applied, testing four feeding rates based on fish biomass: D1 (2%), D2 (3%), D3 (4%), and D4 (5%) per day. Gouramis (3.2–3.3 g, 1.1–1.3 cm) were reared in 24 plastic containers (50×30×27 cm3) under controlled water quality conditions. The results showed that a 5% feeding rate (D4) yielded the best outcomes in absolute length (1.97 ± 0.13 cm), specific growth rate (2.78 ± 0.17% dayâ»Â¹), feed conversion ratio (3.72 ± 0.11), feed efficiency (26.85 ± 0.30%), and survival rate (88.89%). Statistical analysis revealed that different feeding rates significantly influenced absolute length, specific growth rate, and feed conversion ratio, while feed efficiency and survival rate remained unaffected. Despite the promising growth performance at higher feeding rates, the high feed conversion ratio and low feed efficiency highlight the need for improved feed formulations. Future research should focus on optimizing corn cobs as a complementary ingredient to enhance feed efficiency, minimize waste, and contribute to sustainable aquaculture. Incorporating corn cob-based feeds could improve waste management and provide economic benefits to fish farmers.

Pesatnya pertumbuhan industri akuakultur dan keterbatasan ketersediaan pakan ikan konvensional mendorong perlunya sumber pakan alternatif, terutama dalam sistem budidaya ikan intensif. Penelitian ini, yang dilaksanakan pada tanggal 15 Mei hingga 5 Juli 2017 di Bengkulu, bertujuan untuk menentukan tingkat pemberian pakan optimal bagi ikan gurami (Osphronemus gouramy) menggunakan pakan buatan ikan. Rancangan acak lengkap diterapkan dengan menguji empat tingkat pemberian pakan berdasarkan biomassa ikan: D1 (2%), D2 (3%), D3 (4%), dan D4 (5%) per hari. Ikan gurami (3,2–3,3 g, 1,1–1,3 cm) dipelihara dalam 24 wadah plastik (50×30×27 cm³) dengan kualitas air yang terkontrol. Hasil penelitian menunjukkan bahwa tingkat pemberian pakan 5% (D4) memberikan hasil terbaik dalam hal panjang mutlak (1,97 ± 0,13 cm), laju pertumbuhan spesifik (2,78 ± 0,17% hariâ»Â¹), rasio konversi pakan (3,72 ± 0,11), efisiensi pakan (26,85 ± 0,30%), dan tingkat kelangsungan hidup (88,89%). Analisis statistik menunjukkan bahwa tingkat pemberian pakan yang berbeda berpengaruh signifikan terhadap panjang mutlak, laju pertumbuhan spesifik, dan rasio konversi pakan, sedangkan efisiensi pakan dan tingkat kelangsungan hidup tidak terpengaruh. Meskipun tingkat pemberian pakan yang lebih tinggi menghasilkan pertumbuhan yang lebih baik, tingginya rasio konversi pakan dan rendahnya efisiensi pakan menunjukkan perlunya perbaikan formulasi pakan. Penelitian lebih lanjut perlu difokuskan pada optimalisasi tongkol jagung sebagai bahan tambahan pakan untuk meningkatkan efisiensi pakan, mengurangi limbah, dan mendukung kegiatan akuakultur berkelanjutan. Penggunaan pakan berbasis tongkol jagung juga dapat membantu pengelolaan limbah serta memberikan manfaat ekonomi bagi pembudidaya ikan.

Author Biography

Yulfiperius Yulfiperius, Universitas Prof Dr Hazairin SH, Aquaculture Department, Faculty of Agriculture Science, Prof. Dr. Hazairin, SH University

Aquaculture Department, Faculty of Agriculture Science, Prof. Dr. Hazairin, SH University

References

Abidi, S. F., & Khan, M. A. (2014). Evaluation of feeding rate based on growth, feed conversion, protein gain and carcass quality of fingerling Indian major carp, Catla catla (Hamilton). Aquaculture Research, 45(3), 439–447. https://doi.org/10.1111/j.1365-2109.2012.03245.x

Ali, S., & Kaviraj, A. (2018). Aquatic weed Ipomoea aquatica as feed ingredient for rearing Rohu, Labeo rohita (Hamilton). The Egyptian Journal of Aquatic Research, 44(4), 321–325. https://doi.org/10.1016/j.ejar.2018.09.004

Aragão, C., Gonçalves, A. T., Costas, B., Azeredo, R., Xavier, M. J., & Engrola, S. (2022). Alternative proteins for fish diets: Implications beyond growth. Animals, 12(9), 1211. https://doi.org/10.3390/ani12091211

Aryani, N., Mardiah, A., & Syandri, H. (2020). Growth, production and feed conversion performance of the gurami sago (Osphronemus goramy Lacepède, 1801) strain in different aquaculture systems. F1000Research, 9(161), 1–24. https://doi.org/10.12688/f1000research.22201.3

Azrita, Syandri, H., Aryani, N., Mardiah, A., & Suharman, I. (2021). The utilization of new products formulated from water coconut, palm sap sugar, and fungus to increase nutritional feed quality, feed efficiency, growth, and carcass of gurami sago (Osphronemus goramy Lacepède, 1801) juvenile. F1000Research, 10(1121), 1–16. https://doi.org/https://doi.org/10.12688/f1000research.74092.1

Bardach, J. E., Ryther, J. H., & McLarney, W. O. (1972). Aquaculture. The farming and husbandry of freshwater and marine organisms. John Wiley & Sons, Inc.

Basto-Silva, C., Enes, P., Oliva-Teles, A., Capilla, E., & Guerreiro, I. (2022). Dietary protein/carbohydrate ratio and feeding frequency affect feed utilization, intermediary metabolism, and economic efficiency of gilthead seabream (Sparus aurata) juveniles. Aquaculture, 554, 738182. https://doi.org/10.1016/j.aquaculture.2022.738182

Boyd, C. E., & McNevin, A. A. (2022). Overview of aquaculture feeds: global impacts of ingredient production, manufacturing, and use. In D. A. Davis (Ed.), Feed and feeding practices in aquaculture (pp. 3–28). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821598-2.00003-5

Budi, D. S., Alimuddin, & Suprayudi, M. A. (2015). Growth response and feed utilization of giant gourami (Osphronemus goramy) juvenile feeding different protein levels of the diets supplemented with recombinant growth hormone. Hayati Journal of Biosciences, 22(1), 12–19. https://doi.org/10.4308/hjb.22.1.12

Bureau, D. P., Hua, K., & Cho, C. Y. (2006). Effect of feeding level on growth and nutrient deposition in rainbow trout (Oncorhynchus mykiss Walbaum) growing from 150 to 600 g. Aquaculture Research, 37(11), 1090–1098. https://doi.org/10.1111/j.1365-2109.2006.01532.x

Cadorin, D. I., da Silva, M. F. O., Masagounder, K., & Fracalossi, D. M. (2022). Interaction of feeding frequency and feeding rate on growth, nutrient utilization, and plasma metabolites of juvenile genetically improved farmed nile tilapia, Oreochromis niloticus. Journal of the World Aquaculture Society, 53(2), 500–515. https://doi.org/10.1111/jwas.12833

Cahyono, B. (2001). Budidaya ikan di perairan umum. Kanisius.

Chiu, Y. N., Austic, R. E., & Rumsey, G. L. (1988). Effect of feeding level and dietary electrolytes on the arginine requirement of rainbow trout (Salmo gairdneri). Aquaculture, 69(1–2), 79–91. https://doi.org/10.1016/0044-8486(88)90188-3

Dawood, M. A. O., & Koshio, S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Reviews in Aquaculture, 12(2), 987–1002. https://doi.org/10.1111/raq.12368

De Verdal, H., Komen, H., Quillet, E., Chatain, B., Allal, F., Benzie, J. A. H., & Vandeputte, M. (2018). Improving feed efficiency in fish using selective breeding: a review. Reviews in Aquaculture, 10(4), 833–851. https://doi.org/10.1111/raq.12202

Debnath, S., & Saikia, S. K. (2021). Absorption of protein in teleosts: a review. Fish Physiology and Biochemistry, 47, 313-326. https://doi.org/10.1007/s10695-020-00913-6

Devlin, R. H., Biagi, C. A., & Yesaki, T. Y. (2004). Growth, viability and genetic characteristics of GH transgenic coho salmon strains. Aquaculture, 236(1–4), 607–632. https://doi.org/10.1016/j.aquaculture.2004.02.026

Djajasewaka, H. Y. (1985). Makanan ikan. Penebar Swadaya.

Effendie, M. I. (1979). Metoda biologi perikanan. Yayasan Dwi Sri.

Fahrurrozi, A., Mardiana, T. Y., & Ariadi, H. (2023). Pengaruh perbedaan persentase kebutuhan pakan terhadap pertumbuhan dan rasio konversi pakan pada benih ikan bandeng (Chanos chanos). Jurnal Penyuluhan Perikanan dan Kelautan, 17(2), 101–113. https://doi.org/10.33378/jppik.v17i2.405

Food and Agriculture Organization. (2024). Progress in the development of the FAO Guidelines for Sustainable Aquaculture. Food and Agriculture Organization.

Gamboa-Delgado, J., Rojas-Casas, M. G., Nieto-López, M. G., & Cruz-Suárez, L. E. (2013). Simultaneous estimation of the nutritional contribution of fish meal, soy protein isolate and corn gluten to the growth of Pacific white shrimp (Litopenaeus vannamei) using dual stable isotope analysis. Aquaculture, 380–383, 33–40. https://doi.org/https://doi.org/10.1016/j.aquaculture.2012.11.028

Halver, J. E. (1978). Vitamin requirements of finfish. FAO Publisher.

Hamid, S. N. I. N., Abdullah, M. F., Zakaria, Z., Yusof, S. J. H. M., & Abdullah, R. (2016). Formulation of fish feed with optimum protein-bound lysine for African catfish (Clarias gariepinus) fingerlings. Procedia Engineering, 148, 361–369. https://doi.org/10.1016/j.proeng.2016.06.468

Hamidoghli, A., Won, S., Farris, N. W., Bae, J., Choi, W., Yun, H., & Bai, S. C. (2020). Solid state fermented plant protein sources as fish meal replacers in whiteleg shrimp Litopaeneus vannamei. Animal Feed Science and Technology, 264, 114474. https://doi.org/10.1016/j.anifeedsci.2020.114474

Hassan, H. U., Ali, Q. M., Ahmad, N., Masood, Z., Hossain, M. Y., Gabol, K., Khan, W., Hussain, M., Ali, A., & Attaullah, M. (2021). Assessment of growth characteristics, the survival rate and body composition of Asian sea bass Lates calcarifer (Bloch, 1790) under different feeding rates in closed aquaculture system. Saudi Journal of Biological Sciences, 28(2), 1324–1330. https://doi.org/10.1016/j.sjbs.2020.11.056

Hastings, W. H., & Dickie, L. M. (1972). Feed formulation and evaluation. In J. E. Halver (Ed.), Fish nutrition (pp. 327–374). Academic Press.

Hemler, E. C., & Hu, F. B. (2019). Plant-based diets for cardiovascular disease prevention: all plant foods are not created equal. Current Atherosclerosis Reports, 21(5), 1–8. https://doi.org/10.1007/s11883-019-0779-5

Hepher, B. (1989). Principles of fish nutrition. In M. Shilo & S. Sarig (Eds.), Fish culture in warm water systems: Problem and trends (pp. 121–142). CRC. Press.

Hidayatulah, M. F., Fitriyah, H., & Utaminingrum, F. (2022). Sistem klasifikasi kesegaran daging ikan gurami berdasarkan warna dan gas amonia menggunakan K-Nearest Neighbor (KNN) berbasis Arduino. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(2), 824–829.

Hossain, M. A., Focken, U., & Becker, K. (2003). Antinutritive effects of galactomannanâ€rich endosperm of sesbania (Sesbania aculeata) seeds on growth and feed utilization in tilapia, Oreochromis niloticus. Aquaculture Research, 34(13), 1171–1179. https://doi.org/10.1046/j.1365-2109.2003.00924.x

Indonesia National Secretariat. (2000). Regulation of the National Standardization Council of the Republic of Indonesia No 4 of 2022 Regarding Amendments to the Regulation of the National Standardization Council of the Republic of Indonesia No 4 of 2021 Concerning Conformity Assessment Schemes for Indonesian National Standards for the Agriculture, Plantation, Livestock, and Fisheries Sectors. Indonesia National Secretariat.

Islamiyah, D., Rachmawati, D., & Susilowati, T. (2017). Pengaruh penambahan madu pada pakan buatan dengan dosis yang berbeda terhadap performa laju pertumbuhan relatif, efisiensi pemanfaatan pakan dan kelulushidupan ikan bandeng (Chanos chanos). Journal of Aquaculture Management and Technology, 6(4), 67–76.

Jannathulla, R., Dayal, J. S., Ambasankar, K., & Muralidhar, M. (2018). Effect of Aspergillus niger fermented soybean meal and sunflower oil cake on growth, carcass composition and haemolymph indices in Penaeus vannamei Boone, 1931. Aquaculture, 486, 1–8. https://doi.org/10.1016/j.aquaculture.2017.12.005

Jobling, M. (1993). Bioenergetics: feed intake and energy partitioning. In J. C. Rankin & F. B. Jensen (Eds.), Fish ecophysiology (pp. 1-44). Springer Netherlands. https://doi.org/10.1007/978-94-011-2304-4_1

Kamble, M. T., Salin, K. R., Chavan, B. R., Medhe, S. V., Thompson, K. D., & Pirarat, N. (2024). Length-weight relationship and condition factor of Nile tilapia (Oreochromis niloticus) fed diets supplemented with guava and star gooseberry leaf extract. F1000Research, 13(540), 1–15. https://doi.org/10.12688/f1000research.145369.1

Kari, Z. A., Kabir, M. A., Dawood, M. A. O., Razab, M. K. A. A., Ariff, N. S. N. A., Sarkar, T., Pati, S., Edinur, H. A., Mat, K., & Ismail, T. A. (2022). Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture, 546, 737418. https://doi.org/10.1016/j.aquaculture.2021.737418

Kasumyan, A. O., Isaeva, O. M., & Oanh, L. T. K. (2022). Taste attractivity of tropical echinoderms for barramundi Lates calcarifer. Aquaculture, 553, 738051. https://doi.org/10.1016/j.aquaculture.2022.738051

Kim, Y.-O., Oh, S.-Y., & Kim, T. (2021). Effects of the feeding rate on growth performance, body composition, and hematological properties of juvenile mandarin fish Siniperca scherzeri in a recirculating aquaculture system. Sustainability, 13(15), 1–11. https://doi.org/10.3390/su13158257

Kobayashi, S., Morita, T., Miwa, M., Lu, J., Endo, M., Takeuchi, T., & Yoshizaki, G. (2007). Transgenic Nile tilapia (Oreochromis niloticus) over-expressing growth hormone show reduced ammonia excretion. Aquaculture, 270(1–4), 427–435. https://doi.org/10.1016/j.aquaculture.2007.05.016

Kong, W., Huang, S., Yang, Z., Shi, F., Feng, Y., & Khatoon, Z. (2020). Fish feed quality is a key factor in impacting aquaculture water environment: evidence from incubator experiments. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-019-57063-w

Kordi, K. (2009). Budidaya perairan. PT Citra Aditya Bakti.

Kozłowski, M., & Piotrowska, I. (2024). Effect of different feed rations on growth performance in various size classes of juvenile pikeperch, Sander lucioperca. Aquaculture International, 32, 6487-6499. https://doi.org/10.1007/s10499-024-01475-7

Li, P., Mai, K., Trushenski, J., & Wu, G. (2009). New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids, 37, 43–53. https://doi.org/10.1007/s00726-008-0171-1.

Li, X., Zheng, S., & Wu, G. (2021). Nutrition and functions of amino acids in fish. In G. Wu (Ed.), Amino acids in nutrition and health. advances in experimental medicine and biology (pp. 133-168). Springer, Cham. https://doi.org/10.1007/978-3-030-54462-1_8

Luthada-Raswiswi, R., Mukaratirwa, S., & O'Brien, G. (2021). Animal protein sources as a substitute for fishmeal in aquaculture diets: A systematic review and meta-analysis. Applied Sciences, 11(9), 1–16. https://doi.org/10.3390/app11093854

McClements, D. J., & Grossmann, L. (2021). The science of plantâ€based foods: Constructing nextâ€generation meat, fish, milk, and egg analogs. Comprehensive Reviews in Food Science and Food Safety, 20(4), 4049–4100. https://doi.org/10.1111/1541-4337.12771

Michelato, M., de Oliveira Vidal, L. V., Xavier, T. O., de Moura, L. B., de Almeida, F. L. A., Pedrosa, V. B., Furuya, V. R. B., & Furuya, W. M. (2016). Dietary lysine requirement to enhance muscle development and fillet yield of finishing Nile tilapia. Aquaculture, 457, 124–130. https://doi.org/10.1016/j.aquaculture.2016.02.022

Mugoâ€Bundi, J., Oyooâ€Okoth, E., Ngugi, C. C., Manguyaâ€Lusega, D., Rasowo, J., Chepkiruiâ€Boit, V., Opiyo, M., & Njiru, J. (2015). Utilization of Caridina nilotica (Roux) meal as a protein ingredient in feeds for Nile tilapia (Oreochromis niloticus). Aquaculture Research, 46(2), 346–357. https://doi.org/10.1111/are.12181

Mutiasari, W., Santoso, L., & Utomo, D. S. C. (2017). Kajian penambahan tepung ampas kelapa pada pakan ikan bandeng (Chanos chanos). E-Jurnal Rekayasa dan Teknologi Budidaya Perairan, 6(1), 683–690.

Nam, Y. K., Noh, J. K., Cho, Y. S., Cho, H. J., Cho, K.-N., Kim, C. G., & Kim, D. S. (2001). Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis. Transgenic Research, 10, 353–362. https://doi.org/10.1023/A:1016696104185

Napolitano, G., Venditti, P., Agnisola, C., Quartucci, S., Fasciolo, G., Tomajoli, M. T. M., Geremia, E., Catone, C. M., & Ulgiati, S. (2022). Towards sustainable aquaculture systems: Biological and environmental impact of replacing fishmeal with Arthrospira platensis (Nordstedt) (spirulina). Journal of Cleaner Production, 374, 133978. https://doi.org/10.1016/j.jclepro.2022.133978

Nguyen, L., & Davis, D. A. (2016). Comparison of crystalline lysine and intact lysine used as a supplement in practical diets of channel catfish (Ictalurus punctatus) and Nile tilapia (Oreochromis niloticus). Aquaculture, 464, 331–339. https://doi.org/10.1016/j.aquaculture.2016.07.005

Nirmala, K., & Rasmawan. (2010). Kinerja pertumbuhan ikan gurami (Osphronemus goramy Lac.) yang dipelihara pada media. Jurnal Akuakultur Indonesia, 9(1), 46–55. https://doi.org/10.19027/jai.9.46-55

Nohrman, B. A. (1953). Survival rate calculation. Acta Radiologica, 39(1), 78–82. https://doi.org/10.1177/028418515303900108

Novodworski, J., Matos, É. J. A., Gonçalves, R. M., Bombardelli, R. A., & Meurer, F. (2024). Protein requirements of fattening Nile tilapia (Oreochromis niloticus) fed fish meal-free diets. Aquaculture Journal, 4(3), 135–147. https://doi.org/10.3390/aquacj4030010

Novrianto, A., Yulfiperius, Andriyeni, Nurhabib, A., & Supriyono. (2019). Pengaruh pemberian komposisi pakan tepung tongkol jagung yang berbeda terhadap pertumbuhan ikan tawes (Puntius javanicus). Jurnal Agroqua: Media Informasi Agronomi dan Budidaya Perairan, 17(1), 41–48. https://doi.org/10.32663/ja.v17i1.472

Nunes, A. J. P., Dalen, L. L., Leonardi, G., & Burri, L. (2022). Developing sustainable, cost-effective and high-performance shrimp feed formulations containing low fish meal levels. Aquaculture Reports, 27, 1–12. https://doi.org/10.1016/j.aqrep.2022.101422

Oktavianto, D., Susilo, U., & Priyanto, S. (2014). Respon aktivitas amilase dan protease ikan gurami Osphronemus goramy Lac. terhadap perbedaan temperatur air. Scripta Biologica, 1(4), 14–18. https://doi.org/10.20884/1.sb.2014.1.4.45

Olveraâ€Novoa, M. A., Oliveraâ€Castillo, L., & Martínezâ€Palacios, C. A. (2002). Sunflower seed meal as a protein source in diets for Tilapia rendalli (Boulanger, 1896) fingerlings. Aquaculture Research, 33(3), 223–229. https://doi.org/10.1046/j.1365-2109.2002.00666.x

Page, J. W., & Andrews, J. W. (1973). Interactions of dietary levels of protein and energy on channel catfish (Ictalurus punctatus). The Journal of Nutrition, 103(9), 1339–1346. https://doi.org/10.1093/jn/103.9.1339

Possidónio, C., Prada, M., Graça, J., & Piazza, J. (2021). Consumer perceptions of conventional and alternative protein sources: A mixed-methods approach with meal and product framing. Appetite, 156, 1–10. https://doi.org/10.1016/j.appet.2020.104860

Quinn, T.J. II and Deriso, R.B. (1999) Quantitative fish dynamics. Oxford University Press. https://global.oup.com/academic/product/quantitative-fish-dynamics-9780195076318?cc=id&lang=en&

Rahmadika, R. (2019). Pemberian tepung tongkol jagung yang berbeda untuk pertumbuhan ikan nila (Oreochromis niloticus). [Undergraduate Theses, Universitas Prof Dr Hazairin SH]. Universitas Prof Dr Hazairin Repository.

Refstie, S., Korsøen, Ø. J., Storebakken, T., Baeverfjord, G., Lein, I., & Roem, A. J. (2000). Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture, 190(1–2), 49–63. https://doi.org/10.1016/S0044-8486(00)00382-3

Rostika, R., & Safitri, R. (2012). Influence of fish feed containing corn-cob was fermented by Trichoderma Sp, Aspergillus Sp, Rhizopus oligosporus to the rate of growth of Java barb (Puntius Gonionitus). APCBEE Procedia, 2, 148-152. https://doi.org/10.1016/j.apcbee.2012.06.027

Sadya, S., & Bayu, D. (2022, September 21). Produksi ikan gurami Indonesia capai 176.113 ton pada 2021. Data Indonesia. https://dataindonesia.id/industri-perdagangan/detail/produksi-ikan-gurami-indonesia-capai-176113-ton-pada-2021

Sahwan, F. M. (2002). Pakan ikan dan udang. Penebar Swadaya.

Samuelsen, T. A., Mjøs, S. A., & Oterhals, Å. (2013). Impact of variability in fishmeal physicochemical properties on the extrusion process, starch gelatinization and pellet durability and hardness. Animal Feed Science and Technology, 179(1–4), 77–84. https://doi.org/10.1016/j.anifeedsci.2012.10.009

Smedley, M. A., Clokie, B. G. J., Migaud, H., Campbell, P., Walton, J., Hunter, D., Corrigan, D., & Taylor, J. F. (2016). Dietary phosphorous and protein supplementation enhances seawater growth and reduces severity of vertebral malformation in triploid Atlantic salmon (Salmo salar L.). Aquaculture, 451, 357–368. https://doi.org/10.1016/j.aquaculture.2015.10.001

Umiyasih, U., & Wina, E. (2008). Pengolahan dan nilai nutrisi limbah tanaman jagung sebagai pakan ternak ruminansia. Wartazoa, 18(3), 127–136.

Van Doan, H., Hoseinifar, S. H., Faggio, C., Chitmanat, C., Mai, N. T., Jaturasitha, S., & Ringø, E. (2018). Effects of corncob derived xylooligosaccharide on innate immune response, disease resistance, and growth performance in Nile tilapia (Oreochromis niloticus) fingerlings. Aquaculture, 495, 786–793. https://doi.org/10.1016/j.aquaculture.2018.06.068

Volkoff, H., & Rønnestad, I. (2020). Effects of temperature on feeding and digestive processes in fish. Temperature, 7(4), 307–320. https://doi.org/10.1080/23328940.2020.1765950

Walton, M. J., Cowey, C. B., & Adron, J. (1984). The effect of dietary lysine levels on growth and metabolism of rainbow trout (Salmo gairdneri). British Journal of Nutrition, 52(1), 115–122. https://doi.org/10.1079/BJN19840077

Watford, M. (2015). Glutamine and glutamate: Nonessential or essential amino acids? Animal Nutrition, 1(3), 119–122. https://doi.org/10.1016/j.aninu.2015.08.008

Werna, A. T. (2008). Pengaruh pemberian cacing tanah (Lumbricus rubellus) dengan dosis yang berbeda pada ikan oskar (Astronotus ocellatus). Sekolah Tinggi Ilmu Perikanan Kalinyamat Press.

Xing, S., Liang, X., Zhang, X., Olivaâ€Teles, A., Peres, H., Li, M., Wang, H., Mai, K., Kaushik, S. J., & Xue, M. (2024). Essential amino acid requirements of fish and crustaceans, a metaâ€analysis. Reviews in Aquaculture, 16(3), 1069–1086. https://doi.org/10.1111/raq.12886

Yulfiperius, Firman, & Darwisito, S. (2020). Pemanfaatan tongkol jagung sebagai pengganti dedak dalam formulasi pakan ikan ramah lingkungan. In Prosiding Seminar Nasional Perikanan dan Kelautan (pp.140–148). Fakultas Perikanan dan Kelautan, Universitas Lambung Mangkurat.

Zaenuri, R., Suharto, B., & Haji, A. T. S. (2014). Kualitas pakan ikan berbentuk pelet dari limbah pertanian. Jurnal Sumberdaya Alam dan Lingkungan, 1(1), 31–36.

Zheng, K. K., Deng, D. F., De Riu, N., Moniello, G., & Hung, S. S. O. (2015). The effect of feeding rate on the growth performance of green sturgeon (Acipenser medirostris) fry. Aquaculture Nutrition, 21(4), 489-495. https://doi.org/10.1111/anu.12179

Zimbardi, A. L. R. L., Sehn, C., Meleiro, L. P., Souza, F. H. M., Masui, D. C., Nozawa, M. S. F., Guimarães, L. H. S., Jorge, J. A., & Furriel, R. P. M. (2013). Optimization of β-glucosidase, β-xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. International Journal of Molecular Sciences, 14(2), 2875–2902. https://doi.org/10.3390/ijms14022875

Downloads

Published

2025-03-07

How to Cite

Yulfiperius, Y., Firman, F., & Hartini, S. (2025). EFFECT OF DIFFERENT FEEDING RATES OF CORN COB FLOUR SUPPLEMENTED-FEED ON THE GROWTH OF FARMED Osphronemus gouramy. Jurnal Riset Akuakultur, 19(4), 315–329. https://doi.org/10.15578/jra.19.4.2024.315-329

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.

Loading...