EFFECTS OF FEEDING RATE REDUCTION ON THE GROWTH PERFORMANCE AND FEED UTILIZATION OF PACIFIC WHITE SHRIMP REARED USING BIOFLOC SYSTEM

EFFECTS OF FEEDING RATE REDUCTION ON THE GROWTH PERFORMANCE AND FEED UTILIZATION OF PACIFIC WHITE SHRIMP REARED USING BIOFLOC SYSTEM

Authors

  • Anik Kusmiatun Marine and Fisheries Polytechnic of Jembrana
  • Diah Ayu Satyari Utami Marine and Fisheries Polytechnic of Jembrana
  • Tata Firnaeni Marine and Fisheries Polytechnic of Jembrana
  • Yasinta Ega Kaborang Marine and Fisheries Polytechnic of Jembrana
  • Teguh Harijono Marine and Fisheries Polytechnic of Sidoarjo
  • Sartika Tangguda Marine and Fisheries Polytechnic of Kupang
  • Meilya Suzan Triyastuti Marine and Fisheries Polytechnic of Bitung
  • Ricky Djauhari University of Palangka Raya
  • Uras Tantulo University of Palangka Raya
  • Mika Azarya Sihombing University of Palangka Raya

DOI:

https://doi.org/10.15578/jra.19.4.2024.331-343

Keywords:

feed, feeding rate, growth, shrimp, pakan, pertumbuhan, udang vaname

Abstract

Biofloc in shrimp aquaculture provides natural food and reduces the reliance on commercial feed. The extent to which biofloc can optimize feeding management is not, however, fully understood. This study aimed to evaluate the effects of reducing feeding rates on the growth performance and feed utilization of Pacific white shrimp (Litopenaeus vannamei) reared in a biofloc system. A completely randomized design was used with four treatments: K (standard feeding, clear water), N (standard feeding, biofloc), NA (25% feeding reduction, biofloc), and NB (50% feeding reduction, biofloc). Shrimp were stocked at 40 individuals per tank and fed commercial feed containing 40% protein over a 30-day period. Results showed that shrimp in the NA treatment (25% feed reduction with biofloc) had the highest final weight (8.66 ± 0.03 g), biomass (306.13 ± 14.27 g), and weight gain (5.74 ± 0.25 g) compared to other treatments (P<0.05). NA also exhibited a higher specific growth rate (3.63 ± 0.27 %/day) than K and NB. Feed utilization improved with a lower feed conversion ratio and higher protein retention in the NA group. This study highlights that a 25% feeding rate reduction in biofloc systems optimizes shrimp growth and feed utilization. Future research should explore long-term sustainability, biofloc composition variations, and technological integration for scaling up efficient and environmentally sustainable shrimp farming operations.

Penggunaan bioflok dalam budidaya udang memberikan makanan alami dan mengurangi ketergantungan pada pakan komersial. Namun, sejauh mana bioflok dapat mengoptimalkan manajemen pakan belum sepenuhnya dipahami. Penelitian ini bertujuan untuk mengevaluasi efek pengurangan laju pemberian pakan terhadap kinerja pertumbuhan dan pemanfaatan pakan udang vaname (Litopenaeus vannamei) yang dibudidayakan dalam sistem bioflok. Desain penelitian menggunakan rancangan acak lengkap (RAL) dengan empat perlakuan, yaitu: K (pemberian pakan standar, air jernih), N (pemberian pakan standar, bioflok), NA (pengurangan pakan 25%, bioflok), dan NB (pengurangan pakan 50%, bioflok). Udang ditempatkan sebanyak 40 individu per tangki dan diberi pakan komersial yang mengandung 40% protein selama 30 hari. Hasil menunjukkan bahwa udang pada perlakuan NA (pengurangan pakan 25% dengan bioflok) memiliki berat akhir tertinggi (8,66 ± 0,03 g), biomassa (306,13 ± 14,27 g), dan kenaikan berat (5,74 ± 0,25 g) dibandingkan perlakuan lainnya (P<0,05). NA juga menunjukkan tingkat pertumbuhan spesifik yang lebih tinggi (3,63 ± 0,27 %/hari) dibandingkan K dan NB. Pemanfaatan pakan meningkat dengan rasio konversi pakan yang lebih rendah dan retensi protein yang lebih tinggi pada kelompok NA. Penelitian ini menunjukkan bahwa pengurangan feeding rate pakan sebesar 25% dalam sistem bioflok mengoptimalkan pertumbuhan udang dan pemanfaatan pakan. Penelitian di masa depan harus mengeksplorasi keberlanjutan jangka panjang, variasi komposisi bioflok, dan integrasi teknologi untuk meningkatkan praktik budidaya udang yang efisien dan ramah lingkungan.

Author Biographies

Anik Kusmiatun, Marine and Fisheries Polytechnic of Jembrana

Department of Aquaculture

Diah Ayu Satyari Utami, Marine and Fisheries Polytechnic of Jembrana

Department of Aquaculture

Tata Firnaeni, Marine and Fisheries Polytechnic of Jembrana

Department of Aquaculture

Yasinta Ega Kaborang, Marine and Fisheries Polytechnic of Jembrana

Department of Aquaculture

Teguh Harijono, Marine and Fisheries Polytechnic of Sidoarjo

Department of Aquaculture

Sartika Tangguda, Marine and Fisheries Polytechnic of Kupang

Department of Aquaculture

Meilya Suzan Triyastuti, Marine and Fisheries Polytechnic of Bitung

Depertment of Fisheries Product Processing Engineering

Ricky Djauhari, University of Palangka Raya

Department of Aquaculture, Faculty of Agriculture

Uras Tantulo, University of Palangka Raya

Department of Aquaculture, Faculty of Agriculture

Mika Azarya Sihombing, University of Palangka Raya

Department of Aquaculture, Faculty of Agriculture

References

Adipu, Y., Lumenta, C., Mangindaan, R. E. P., & Manoppo, H. (2019). Growth performance of Litopenaeus vannamei grown in biofloc system produced from different carbohydrate sources. AACL Bioflux, 12(2), 472-479.

Akbar, S. A., & Fazli, R. R. (2023). Meta-analysis: The effectiveness of artificial diets to increase on survival rate of vannamei shrimp (Litopenaeus vannamei). IOP Conference Series: Earth and Environmental Science, 1221(1), 012066.

Almeida, M. S. D., Gimenes, R. M. T., Furtado, P. S., Poersch, L. H., Wasielesky, Jr., W. F. B., Fóes, G. K., & Mauad, J. R. C. (2022). Economic analysis of intensive and super-intensive Litopenaeus vannamei shrimp production in a biofloc technology system. Boletim do Instituto de Pesca, 48, e692. https://doi.org/10.20950/10.20950/1678-2305/bip.2022.48.e692

Amin, S. A., Parker, M. S., & Armbrust, E. V. (2012). Interactions between diatoms and bacteria. Microbiology and Molecular Biology Reviews, 76, 667-684.

Anjalee-Devi, C., & Madhusoodana-Kurup, B. (2015). Biofloc technology: An overview and its application in animal food industry. International Journal of Fisheries and Aquaculture Sciences, 5(1), 1-20.

Association of Official Analytical Chemists. (1995). Official methods of analysis of AOAC International. (16th Ed.), Volume 1 (Cunnif, P. Ed.). AOAC International.

Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4), 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025

Avnimelech, Y. (2009). Biofloc technology: A practical guide book. World Aquaculture Society.

Barzamini, M., Harsij, M., Adineh, H., & Jafaryan, H. (2021). The effect of biofloc-supplemented diets on the Pacific white shrimp (Litopenaeus vannamei): Analysis of water quality, growth performance, and biochemical composition. Iranian Journal of Aquatic Animal Health, 7(2), 30-43.

Becerril-Cortés, D., Monroy-Dosta, M. D. C., Emerenciano, M. G. C., Castro-Mejía, G., Sofia, B., Bermúdez, S., & Correa, G. V. (2018). Effect on nutritional composition of produced bioflocs with different carbon sources (molasses, coffee waste and rice bran) in biofloc system. International Journal of Fisheries and Aquatic Studies, 6(2), 541-547.

Brito, L. O., Arana, L. A. V., Soares, R. B., Severi, W., Miranda, R. H., & da Silva, S. M. (2014). Water quality, phytoplankton composition and growth of Litopenaeus vannamei (Boone) in an integrated biofloc system with Gracilaria birdiae (Greville) and Gracilaria domingensis (Kutzing). Aquaculture International, 22, 1649-1664.

Burford, M. A., Thompson, P. J., McIntosh, R. P., Bauman, R. H., & Pearson, D. C. (2004). The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-density, zero-exchange system. Aquaculture, 232, 525-537.

Caldini, N. N., Cavalcante, D., Rocha Filho, P. R., & Sa, M. V. (2015). Feeding nile tilapia with artificial diets and dried bioflocs biomass. Acta Scientiarum Animal Sciences, 37(4), 335-341.

Chaikaew, P., Rugkarn, N., Pongpipatwattana, V., & Kanokkantapong, V. (2019). Enhancing ecological-economic efficiency of intensive shrimp farm through in-out nutrient budget and feed conversion ratio. Sustainable Environment Research, 29, 1-11. https://doi.org.10.1186/s42834-019-0029-0

Crab, R., Defoirdt, T., Bossier, P., & Verstraete. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356, 351-356.

da Silva, W. A., de Morais, A. P. M., Figueiredo, J. P. V., Rafael, R. E. Q., de Oliveira, C. Y. B., & Vieira, F. N. (2022). Production of Pacific white shrimp in biofloc system with different food management strategies. Boletim do Instituto de Pesca, 48, e707. https://doi.org/10.20950/1678-2305/bip.2022.48.e707

De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008). The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, 277(3-4), 125-237. https://doi.org/10.1016/j.aquaculture.2008.02.019

Emerenciano, M., Ballester, E. L. C., Cavalli, R. O., & Wasielesky, W. (2011). Effect of biofloc technology (BFT) on the early post larval stage of pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance. Aquaculture International, 19, 891-901.

Emerenciano, M., Cuzon, G., Paredes, A., & Gaxiola, G. (2013a). Evaluation of biofloc technology in pink shrimp Farfantepenaeus duorarum culture: growth performance, water quality, microorganisms profile and proximate analysis of biofloc. Aquaculture International, 21(6), 1381-1394. https://doi.org/10.1007/s10499-013-9640-y

Emerenciano, M., Gaxiola, G., & Cuzon, G. (2013b). Biofloc technology (BFT): A review for aquaculture application and animal food industry. In M.D. Matovic (Ed.), Biomass now-cultivation and utilization (pp. 301-328). InTech.

Emerenciano, M. G. C., Martínez-Córdova, L. R., Martínez-Porchas, M., & Miranda-Baeza, A. (2017). Biofloc technology (BFT): a tool for water quality management in aquaculture. Water Quality, 5, 92-109.

Hosain, M. E., Amin, S. M. N., Arshad, A., Kamarudin, M. S., & Karim, M. (2021). Effects of carbon sources on the culture of giant river prawn in biofloc system during nursery phase. Aquaculture Reports, 19, 100607.

Hwihy, H., Zeina, A., Abu Husein, M., & El-Damhougy, K. (2021). Impact of biofloc technology on growth performance and biochemical parameters of Oreochromis niloticus. Egyptian Journal of Aquatic Biology and Fisheries, 25(1), 761-774.

Iber, B. T., & Kasan, N. A. (2021). Recent advances in shrimp aquaculture wastewater management. Heliyon, 7, e08283. https://doi.org/10.1016/j.heliyon.2021.e08283

Khanjani, M., Sajjadi, M., Alizadeh, M., & Sourinejad, I. (2016). Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iranian Journal of Fisheries Sciences, 15(4), 1465-1484.

Khanjani, M. H., Alizadeh, M., & Sharifinia, M. (2019). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: the effects of different food sources and salinity levels. Aquaculture Nutrition, 26(2), 328-337. https://doi.org.10.1111/anu.12994

Khanjani, M. H., Sajjadi, M. M., Alizadeh, M., & Sourinejad, I. (2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, 48(4), 1491-1501.

Kim, S. -K., Guo, Q., & Jang, I. -K. (2015). Effect of biofloc on the survival and growth of the postlarvae of three Penaeus (Litopenaeus vananmei, Fenneropenaeus chinensis, and Marsupenaeus japonicus) and their biofloc feeding efficiencies, as related to the morphological structure of the third maxilliped. Journal of Crustacean Biology, 35(1), 41-50.

Kirchman, D. L. (1994). The uptake of inorganic nutrients by heterotrophic bacteria. Microbial Ecology, 28, 255-271.

Krummenauer, D., Poersch, L., Romano, L. A., Lara, G. R., Encarnação, P., & Wasielesky Jr., W. (2014a). The effect of probiotics in a Litopenaeus vannamei biofloc culture system infected with Vibrio parahaemolyticus. Journal of Applied Aquaculture, 26(4), 370-379.

Krummenauer, D., Samocha, T., Poersch, L., Lara, G., & Wasielesky Jr., W. (2014b). The reuse of water on the culture of Pacific white shrimp, Litopenaeus vannamei, in BFT system. Journal of the World Aquaculture Society, 45(1), 3-14.

Kuhn, D. D., & Lawrence, A. (2015). Ex-situ biofloc technology. In Y. Avnimelech (Ed.), Biofloc technology-a practical guide book (3rd Ed.). World Aquaculture Society.

Kurniaji. A., Renitasari, D. P., Saridu, S. A., Anton, & Yunarty. (2023). The effect of different probiotic sources on vannamei shrimp (Litopenaeus vannamei) cultivation with biofloc system. Journal of Aquaculture and Fish Health, 12(3), 405-420. https://doi.org.10.20473/jafh.v12i3.37996

Lee, C., Kim, S., Lim, S. -J., & Lee, K. -J. (2017). Supplemental effects of biofloc powder on growth performance, innate immunity, and disease resistance of Pacific white shrimp Litopenaeus vannamei. Fisheries and Aquatic Sciences, 20, 1-7. https://doi.org.10.1186/s41240-017-0059-7

Luo, G., Gao, Q., Wang, C., Liu, W., Sun, D., Li, L., & Tan, H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422, 1-7. https://doi.org/10.1016/j.aquaculture.2013.11.023

Maicá, P. F., de Borba, M. R., Martins, T. G., & Junior, W. W. (2014). Effect of salinity on performance and body composition of Pacific white shrimp juveniles reared in a super-intensive system. Revista Brasileira de Zootecnia, 43(7), 343–350. https://doi.org/10.1590/S1516-35982014000700001

Mansour, A. T., Ashry, O. A., Ashour, M., Alsaqufi, A. S., Ramadan, K. M. A., & Sharawy, Z. Z. (2022). The optimization of dietary protein level and carbon sources on biofloc nutritive values, bacterial abundance, and growth performances of whiteleg shrimp (Litopenaeus vannamei) juveniles. Life, 12(6), 888. https://doi.org/10.3390/life12060888

Martínez-Córdova, L. R., Emerenciano, M., Miranda-Baeza, A., & Martínez-Porchas, M. (2015). Microbial-based systems for aquaculture of fish and shrimp: An updated review. Reviews in Aquaculture, 7(2), 131-148. https://doi.org/10.1111/raq.12058

Megahed, M. E. (2010). The effect of microbial biofloc on water quality, survival and growth of the green tiger shrimp (Penaeus semisulcatus) fed with different crude protein levels. Journal of the Arabian Aquaculture Society, 5(2), 119-142.

Ministry of Marine Affairs and Fisheries. (2016). Peraturan Menteri Kelautan dan Perikanan Republik Indonesia Nomor 75/PERMEN-KP/2016 tentang Pedoman Umum Pembesaran Udang Windu (Penaeus monodon) dan Udang Vaname (Litopenaeus vannamei). Kementerian Kelautan dan Perikanan.

Padeniya, U., Davis, D. A., Wells, D. A., & Bruce, T. J. (2022). Microbial interactions, growth, and health of aquatic species in biofloc systems. Water, 14(24), 4019. https://doi.org/10.3390/w14244019

Padilla, A. M., Martins, M. A., Carneiro, R. F. S., Franch, F. C. L., de Lorenzo, M. A., & Vieira, F. N. (2024). Evaluation of feeding table optimizations in Pacific white shrimp nursery biofloc systems. Boletim do Instituto de Pesca, 50, e895. https://doi.org/10.20950/1678-2305/bip.2024.50.e895

Panigrahi, A., Saranya, C., Ambiganandam, M., Sundaram, M., Sivakumar, M. R., & Kumaraguru Vasagam, K. P. (2020). Evaluation of biofloc generation protocols to adopt high density nursery rearing of Penaeus vannamei for better growth performances, protective responses and imuno modulation in biofloc based technology. Aquaculture, 522, 735095. https://doi.org/10.1016/j.aquaculture.2020.735095

Panigrahi, A., Sundaram, M., Chakrapani, S., Rajasekar, S., Syama Dayal, J., & Chavali, G. (2018). Effect of carbon and nitrogen ratio (C:N) manipulation on the production performance and immunity of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in a biofloc-based rearing system. Aquaculture Research, 50(1), 29-41.

Prachumwat, A., Wechprasit, P., Srisala, J., Kriangsaksri, R., Flegel, T. W., Thitamadee, S., & Sritunyalucksana, K. (2020). Shewanella khirikhana sp. nov.-a shrimp pathogen isolated from a cultivation pond exhibiting early mortality syndrome. Microbial Biotechnology, 13(3), 781-795.

Prasetiyono, E., Bidayani, E., Robin, & Syaputra, D. (2022). Analisis kandungan nitrat dan fosfat pada lokasi buangan limbah tambak udang vaname (Litopenaeus vannamei) di Kabupaten Bangka Tengah Provinsi Kepulauan Bangka Belitung. Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, 18(2), 73-79.

Rego, M. A. S., Sabbag, O. J., Soares, R., & Peixoto, S. (2017). Risk analysis of the insertion of biofloc technology in a marine shrimp Litopenaeus vannamei production in a farm in Pernambuco, Brazil: a case study. Aquaculture, 469, 67-71. https://doi.org/10.1016/j.aquaculture.2016.12.006

Rupiwardani, I., Saktiawan, Y., & Yohanan, A. (2023). Unveiling vannamei shrimp farming’s impact on water pollution in Wonocoyo Village. Jurnal Pembangunan dan Alam Lestari, 14(2), 70-75. https://doi.org.10.21776/ub.jpal.2023.014.02.05

Samadan, G. M., Rustadi, Djumanto, & Murwantoko. (2018). Production performance of whiteleg shrimp Litopenaeus vannamei at different stocking densities reared in sand ponds using plastic mulch. AACL Bioflux, 11(4), 1213-1221.

Samocha, T. M., Patnaik, S., & Gandy, R. I. (2004). Heterotrophic intensification of pond shrimp production. Book of Abstract of Fifth International Conference on Recirculating Aquaculture, 22-25 July 2004. Roanoke, VA, US.

Samocha, T. M., Prangnell, D. I., Hanson, T. R., Treece, G. D., Morris, T. C., Castro, L. F., & Staresinic, N. (2017). Design and operation of super intensive, biofloc-dominated system for indoor production of the Pacific white shrimp, Litopenaeus vannamei – The Texas A&M AgriLife Research Experience. World Aquaculture Society.

Saoud, I. P., Davis, D. A., & Rouse, D. B. (2003). Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture, 217(1-4), 373-383. https://doi.org/10.1016/S0044-8486(02)00418-0

Sharawy, Z. Z., Abbas, E. M., Abdelkhalek, N. K., Ashry, O. A., Abd El-Fattah, L. S., El-Sawy, M. A., Helal, M. F., & El-Haroun, E. (2022). Effect of organic carbon source and stocking densities on growth indices, water microflora, and immune-related genes expression of Litopenaeus vannamei larvae in intensive culture. Aquaculture, 546, 737397.

Supono, J. H., Prayitno, S. B., & Darmanto, Y. (2014). White shrimp (Litopenaeus vannamei) culture using heterotrophic aquaculture system on nursery phase. International Journal of Waste Resources, 4(2), 1-4.

Uawisetwathana, U., Situmorang, M. L., Arayamethakorn, S., Haniswita, Suantika, G., Panya, A., Karoonuthaisiri, N., Rungrassamee, W. (2021). Supplementation of ex-situ biofloc to improve growth performance and enhance nutritional values of the Pacific white shrimp rearing at low salinity conditions. Applied Sciences, 11, 4598. https://doi.org/10.3390/app11104598

Van Wyk, P., & Scarpa, J. (1999). Water quality requirements and management. In P. Van Wyk, M. Davis-Hodgkins, R. Laramore, K. L. Main, J. Mountain, & J. Scarpa (Eds.), Farming marine shrimp in recirculating freshwater systems (pp. 141-161). Harbor Branch Oceanographic Institution.

Vidal, J. M. A., Pessoa, M. N. D. C., Santos, F. L. D., Mendes, P. P., & Mendes, M. S. (2018). Probiotic potential Bacillus cereus against Vibrio spp. in post-larvae shrimps. Revista Caatinga, 31(2), 495-503.

Wasielesky Jr., W., Atwood, H., Stokes, A., & Browdy, C. L. (2006). Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1-4), 396-403. https://doi.org/10.1016/j.aquaculture.2006.04.030

Widanarni, Ekasari, J., & Maryam, S. (2012). Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. HAYATI Journal of Biosciences, 19(2), 73-80. https://doi.org/10.4308/hjb.19.2.73

Xu, W. J., & Pan, L. Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356, 147-152.

Yassien, M. H., Ashry, O. A., & Mohamed, M. A. (2021). Effect of bioflocs on growth performance and survival of the white-leg shrimp Litopenaeus vannamei raised in zero-water exchange culture tanks. Egyptian Journal of Aquatic Biology & Fisheries, 25(2), 645-657.

Yun, H., Shahkar, E., Katya, K., Jang, I. K., Kim, S. K., & Bai, S. C. (2016). Effects of bioflocs on dietary protein requirement in juvenile whiteleg shrimp, Litopenaeus vannamei. Aquaculture Research, 47(10), 3203-3214.

Downloads

Published

2025-03-07

How to Cite

Kusmiatun, A., Utami, D. A. S., Firnaeni, T., Kaborang, Y. E., Harijono, T., Tangguda, S., … Sihombing, M. A. (2025). EFFECTS OF FEEDING RATE REDUCTION ON THE GROWTH PERFORMANCE AND FEED UTILIZATION OF PACIFIC WHITE SHRIMP REARED USING BIOFLOC SYSTEM. Jurnal Riset Akuakultur, 19(4), 331–343. https://doi.org/10.15578/jra.19.4.2024.331-343

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Loading...